Swoosн: Practical Lattice-Based Non-Interactive Key Exchange

Phillip Gajland^{1, 2}, Bor de Kock³, Miguel Quaresma¹, Giulio Malavolta¹, Peter Schwabe^{1, 4}

- ¹ Max Planck Institute for Security and Privacy, Bochum, Germany **=**
- ² Ruhr University Bochum, Bochum, Germany **=**
- ³ NTNU Norwegian University of Science and Technology, Trondheim, Norway 📇
- ⁴ Radboud University, Nijmegen, The Netherlands 💳

https://ia.cr/2023/271

Accepted at USENIX 2024

Non-Interactive Key Exchange (NIKE) vs. Key-Encapsulation Mechanisms (KEMs)

- Efficient post-quantum key exchange protocols differ from standard Diffie-Hellman, needing extra rounds of communication.
- These protocols can replace Diffie-Hellman in some scenarios. However others require a post-quantum secure non-interactive protocol.

Our work aims to show the practical feasibility of lattice-based NIKE, which has proven challenging for the past decades, and answer the question:

Is lattice-based non-interactive key exchange feasible in practice?

 pk_A

Results: Our lattice-based NIKE SWOOSH

Schomo (variant)	Assumption	Non-interactive	Dost-quantum	Size (bytes)		Cycles	
Scheme (variant)	ASSUMPTION		rust-quantum	С	pk	Gen	Enc + Dec or SdK
CRYSTALS-Kyber (Kyber-768 [1])	M-LWE	×		1088	1 184	200 302	539108(251384+287724)
Classic McEliece (mceliece348864 [2])	Binary Goppa Codes	×		96	261 120	46 715 060	143178(31000+112178)
ECDH (X25519 [3])	CDH		×	_	32	28 187	87 942
CTIDH (CTIDH-1024 [4])	CSIDH			_	128	469 520 000	511 190 000
This work (Passive-Swoosн)	M-LWE			—	221 184	146 920 890	10 612 666

M-LWE based NIKE

Passive to active security

Passive-Swoosh satisfies semi-**Theorem 1:** malicious correctness in the quantum random

Parameters

Parameter	Description	Value
β	upper bound on $\ \vec{s}\ _{\infty} = \ \vec{e}\ _{\infty}$	1
q	prime modulus	$2^{214} - 255$
d	dim of $\mathcal{R}_q \coloneqq \mathbb{Z}_q[X]/(X^d+1)$	256
/	# factors $X^d + 1$ splits into mod q	128
N	height of the A matrix	32
п	lattice dimension	8192
		p(-1) = 25%
χ	secret / noise distribution	p(0) = 50%
		p(1) = 25%

Select References

- [1] P. Schwabe, R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, G. Seiler, D. Stehlé, and J. Ding. CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology, 2022.
- [2] M. R. Albrecht, D. J. Bernstein, T. Chou, C. Cid, J. Gilcher, T. Lange, V. Maram, I. von Maurich, R. Misoczki, R. Niederhagen, K. G. Paterson, E. Persichetti, C. Peters, P. Schwabe, N. Sendrier, J. Szefer, C. Jung Tjhai, M. Tomlinson, and W. Wang. Classic McEliece. Technical report, National Institute of Standards and Technology, 2022.

[3] D. J. Bernstein Curve25519: New Diffie-Hellman speed records. PKC, 2023.

[4] G. Banegas, D. J. Bernstein, F. Campos, T. Chou, T. Lange, M. Meyer, B. Smith, and J. Sotáková. CTIDH: faster constant- time CSIDH. TCHES, 2021.