Ring Signatures for Deniable AKEM: Gandalf's Fellowship

Phillip Gajland^{1,2}, Jonas Janneck², Eike Kiltz²

¹Max Planck Institute for Security and Privacy ²Ruhr University Bochum https://ia.cr/2024/890

Accepted at *CRYPTO '24*.

Ring Signature Scheme [RST01]

RSig = (Gen, Sgn, Ver)

Ring signatures [RST01] allow users to sign messages on behalf of dynamically formed user groups, and are publicly verifiable while preserving the signer's anonymity within the group (signing ring ρ).

MAX PLANCK INSTITUTE

FOR SECURITY AND PRIVAC

- Ring signatures are widely adopted in blockchains and voting systems.
- Recent works achieve asymptotic signature size O(log(|ρ|)) using proof systems. However, for applications involving small rings, linear schemes are preferable.
- We construct a ring signature scheme, GANDALF, specifically for small rings, providing 50% reduction in signature sizes over the state of the art.

(*sk*₄, *pk*₄) ← Gen

- $(sk_3, pk_3) \xleftarrow{\$} \text{Gen}$
- ► GANDALF, is based on the NTRU pre-image sampleable trapdoor function f_h [GPV08] over the NTRU ring.
- Concretely, f_h inputs two ring elements of small norm and is defined as $f_h(u, v) = h * u + v$. A valid ring signature on message *m* for the ring $\rho = \{h_1, \ldots, h_k\}$ consists of a vector $(u_1, \ldots, u_k) \in \mathcal{R}^k$ such that

$$\left\| \left(u_1, \ldots, u_k, v = \mathsf{H}(m, \rho) - \sum_{i=1}^k h_i * u_i \right) \right\|_2 \leq \beta.$$

The ring signature essentially consists of k "unseeded FALCON signatures" [PFHK+22] and ring element v is implicitly reconstructed in the verification equation.

Deniable Authenticated Key Exchange Mechanisms (AKEM) [ABHK+21]

AKEM = (Gen, Enc, Dec)

- An AKEM can be thought of the KEM analogue of signcryption and was first formalised in [ABHK+21]. It is the primitive behind the recent HPKE [BBLW22] standard used in MLS and TLS.
- Our work introduces and formalises deniability for the AKEM primitive.
- Furthermore, we show a black box construction of a deniable AKEM using our ring signature scheme.

	Honest Receiver		Dishonest Receiver								
	<i>sk</i> _r does not leak	<i>sk</i> r leaks	<i>sk</i> r does not leak	<i>sk</i> _r leaks							
Sender <i>sk</i> _s does not leak	$Sim(\emptyset), \mathcal{A}(\emptyset)$	Sim(∅), <i>A</i> (<i>sk</i> _r)	$Sim(\mathbf{sk}_r), \mathcal{A}(\emptyset)$	$Sim(sk_r), \mathcal{A}(sk_r)$	Primitive	Scheme (variant)	Security	Model	Size (in bytes)		
									σ	С	pk
					RSig	GANDALF [this work]	UF, Ano	ROM	1 244		896
est aks	Sim(∅), <i>A</i> (<i>sk_s</i>)	$Sim(\emptyset), \mathcal{A}(sk_s, sk_r)$	$Sim(\mathbf{sk}_r), \mathcal{A}(\mathbf{sk}_s)$	$Sim(sk_r), \mathcal{A}(sk_s, sk_r)$	KEM	NTRU-A [DHKL+23]	IND-CCA	QROM		768	768
les les					AKEM	AKEM [this work]	Ins-Aut, Ins-CCA	Standard		2 0 1 2	1 664
- SK _s							HR-Den, DR-Den				

[DHKL+23] Julien Duman, Kathrin Hövelmanns, Eike Kiltz, Vadim Lyubashevsky, Gregor Seiler and Dominique Unruh. "A Thorough Treatment of Highly-Efficient NTRU Instantiations". In: *Public-Key Cryptography – PKC 2023*. 2023.

[BBLW22] Richard Barnes, Karthikeyan Bhargavan, Benjamin Lipp and Christopher A. Wood. *Hybrid Public Key Encryption*. RFC 9180. 2022.

[PFHK+22] Thomas Prest, Pierre-Alain Fouque, Jeffrey Hoffstein, Paul Kirchner, Vadim Lyubashevsky, Thomas Pornin, Thomas Ricosset, Gregor Seiler, William Whyte and Zhenfei Zhang. FALCON. Tech. rep. available at https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022. National Institute of Standards and Technology, 2022.

[ABHK+21] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp and Doreen Riepel. "Analysing the HPKE Standard". In: Advances in Cryptology – EUROCRYPT 2021. 2021.
[YELA+21] Tsz Hon Yuen, Muhammed F. Esgin, Joseph K. Liu, Man Ho Au and Zhimin Ding. "DualRing: Generic Construction of Ring Signatures with Efficient Instantiations". In: Advances in Cryptology – CRYPTO 2021. 2021.

[LAZ19] Xingye Lu, Man Ho Au and Zhenfei Zhang. "Raptor: A Practical Lattice-Based (Linkable) Ring Signature". In: Applied Cryptography and Network Security. 2019.

[GPV08] Craig Gentry, Chris Peikert and Vinod Vaikuntanathan. "Trapdoors for hard lattices and new cryptographic constructions". In: *Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing*. 2008.

[RST01] Ronald L. Rivest, Adi Shamir and Yael Tauman. "How to Leak a Secret". In: Advances in Cryptology — ASIACRYPT 2001. 2001.